题目内容
设函数
(Ⅰ) 证明: 当0< a < b ,且时,ab >1;
(Ⅱ) 点P (x0, y0 ) (0< x0 <1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x0表达).
(Ⅰ) 证明: 当0< a < b ,且时,ab >1;
(Ⅱ) 点P (x0, y0 ) (0< x0 <1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x0表达).
(1)见解析(2)
证明:(I)
故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b且f(a)=f(b)得0<a<1<b和
故
(II)0<x<1时,
曲线y=f(x)在点P(x0,y0)处的切线方程为:
∴切线与x轴、y轴正向的交点为
故所求三角形面积表达式为:
故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b且f(a)=f(b)得0<a<1<b和
故
(II)0<x<1时,
曲线y=f(x)在点P(x0,y0)处的切线方程为:
∴切线与x轴、y轴正向的交点为
故所求三角形面积表达式为:
练习册系列答案
相关题目