题目内容
【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.
年龄 (单位:岁) | |||||
保费 (单位:元) |
(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;
(2之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?
【答案】(1)30;(2),比较划算.
【解析】
(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式 即可求出结果,最后取近似值即可;
(2)分别计算参保与不参保时的期望,,比较大小即可.
解:(1)由,
解得.
保险公司每年收取的保费为:
∴要使公司不亏本,则,即
解得
∴.
(2)①若该老人购买了此项保险,则的取值为
∴(元).
②若该老人没有购买此项保险,则的取值为.
∴(元).
∴年龄为的该老人购买此项保险比较划算.
练习册系列答案
相关题目