题目内容

【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.

年龄

(单位:岁)

保费

(单位:元)

1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值

2之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费.某老人年龄岁,若购买该项保险(中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为.试比较的期望值大小,并判断该老人购买此项保险是否划算?

【答案】130;(2,比较划算.

【解析】

1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式 即可求出结果,最后取近似值即可;

2)分别计算参保与不参保时的期望,比较大小即可.

解:(1)由

解得.

保险公司每年收取的保费为:

∴要使公司不亏本,则,即

解得

.

2)①若该老人购买了此项保险,则的取值为

().

②若该老人没有购买此项保险,则的取值为.

().

∴年龄为的该老人购买此项保险比较划算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网