题目内容
【题目】已知正三棱锥P﹣ABC,点P,A,B,C都在半径为 的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为 .
【答案】
【解析】解:∵正三棱锥P﹣ABC,PA,PB,PC两两垂直, ∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,
∵圆O的半径为 ,
∴正方体的边长为2,即PA=PB=PC=2
球心到截面ABC的距离即正方体中心到截面ABC的距离
设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V= S△ABC×h= S△PAB×PC= × ×2×2×2=
△ABC为边长为2 的正三角形,S△ABC= ×
∴h= =
∴正方体中心O到截面ABC的距离为 ﹣ =
故答案为
先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算
练习册系列答案
相关题目
【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:,K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |