题目内容
15.下列说法中错误的有③④.①已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2},x≥0}\\{{2}^{-x},x<0}\end{array}\right.$,则f[f(-2)]=4;
②已知O为平面内任意一点,A,B,C是平面内互不相同的三点,且满足$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,x+y=1,则A,B,C三点共线;
③已知平面α∩平面β=l,直线a?α且a⊥直线l,直线b?β,则a⊥b是α⊥β的充要条件;
④若△ABC是锐角三角形,则cosA<cosB;
⑤若f(x)=sin(2x+φ)-cos(2x-φ)的最大值为1,且φ∈(0,$\frac{π}{2}$),则f(x)的单调增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z)
分析 对5个命题分别进行判断,即可得出结论.
解答 解:①已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2},x≥0}\\{{2}^{-x},x<0}\end{array}\right.$,则f[f(-2)]=f(4)=4,正确;
②已知O为平面内任意一点,A,B,C是平面内互不相同的三点,且满足$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,x+y=1,则A,B,C三点共线,正确;
③已知平面α∩平面β=l,直线a?α且a⊥直线l,直线b?β,b∥l,则a⊥b不能推出α⊥β,故不正确;
④若△ABC是锐角三角形,则cosA<cosB,不正确,比如等边三角形;
⑤若f(x)=sin(2x+φ)-cos(2x-φ)=-2sin(φ-$\frac{π}{4}$)sin(2x-$\frac{π}{4}$),最大值为1,且φ∈(0,$\frac{π}{2}$),∴f(x)=sin(2x-$\frac{π}{4}$),则f(x)的单调增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z),正确.
故答案为:③④.
点评 本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合性强.
练习册系列答案
相关题目
11.已知不等式x2-ax+a-2>0(a>2)的解集为(-∞,x1)∪(x2,+∞),则x1+x2+$\frac{1}{{x}_{1}{x}_{2}}$的最小值为( )
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 4 |
6.设函数f(x)=(a-x)ex-1(e为自然对数的底数).
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.
3.对某中学高二某班40名学生是否喜欢数学课程进行问卷调查,将调查所得数据绘制成二堆条形图如图所示.
(Ⅰ)根据图中相关数据完成以下2×2列联表;并计算在犯错误的概率不超过多少的前提下认为“性别与是否喜欢数学课程有关系”?
(Ⅱ)从该班所有女生中随机选取2人交流学习体会,求这2人中喜欢数学课程的人数X的分布列和数学期望.
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
(Ⅰ)根据图中相关数据完成以下2×2列联表;并计算在犯错误的概率不超过多少的前提下认为“性别与是否喜欢数学课程有关系”?
喜欢数学课程 | 不喜欢数学课程 | 总计 | |
男 | |||
女 | |||
总计 | 40 |
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.01 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 6.635 |
7.已知在△ABC中,∠A、∠B、∠C所对的边是a、b、c,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$且$\overrightarrow{GA}$•$\overrightarrow{GB}$=0,若(tanA+tanB)•tanC=mtanAtanB,则m的值为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |