题目内容
5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{\sqrt{2}}{2}$,点Q($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$)在椭圆C上.(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆C上异于其顶点的动点,O为坐标原点,过椭圆右焦点F2作OP平行线交椭圆C于A、B两点.
(i)试探究|OP|2和|AB|的比值是否为一个常数?若是,求出这个常数,若不是,请说明理由.
(ii)记△PF2A的面积为S1,△OF2B的面积为S2,令S=S1+S2,求证:S$<\frac{\sqrt{2}}{2}$.
分析 (Ⅰ)由$\frac{c}{a}=\frac{\sqrt{2}}{2}$,得到a2=2b2,再把点的坐标代入椭圆方程得另一方程,联立方程组求得a,b,则椭圆方程可求;
(Ⅱ)(i)设P(x0,y0)(-1<y0<1且y0≠0),则${{x}_{0}}^{2}+2{{y}_{0}}^{2}=2$,求出OP的斜率,得到AB的斜率,进一步得到AB的方程,和椭圆方程联立,由弦长公式求得AB的长度,结合P在椭圆上整体运算求得$\frac{|OP{|}^{2}}{|AB|}=\frac{{{x}_{0}}^{2}+{{y}_{0}}^{2}}{\sqrt{2}(2-{{y}_{0}}^{2})}$=$\frac{2-{{y}_{0}}^{2}}{\sqrt{2}(2-{{y}_{0}}^{2})}=\frac{\sqrt{2}}{2}$;
(ii)画图可得${S}_{△O{F}_{2}B}={S}_{△P{F}_{2}B}$,从而有S=S1+S2 =S△PAB,求出P到AB的距离,结合(i)求得的AB的长度,代入三角形面积公式即可证得答案.
解答 (Ⅰ)解:由题意知$\frac{c}{a}=\frac{\sqrt{2}}{2}$,即$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$,$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{2}$,a2=2b2,①
又点Q($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$)在椭圆C上,∴$\frac{1}{2{a}^{2}}+\frac{3}{4{b}^{2}}=1$,②
联立①②,解得a2=2,b2=1.
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)(i)解:设P(x0,y0)(-1<y0<1且y0≠0),则${{x}_{0}}^{2}+2{{y}_{0}}^{2}=2$,
∴${k}_{OP}=\frac{{y}_{0}}{{x}_{0}}$,则AB所在直线方程为y=$\frac{{y}_{0}}{{x}_{0}}(x-1)$,
联立$\left\{\begin{array}{l}{y=\frac{{y}_{0}}{{x}_{0}}(x-1)}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,得${x}^{2}-2{{y}_{0}}^{2}x+{{y}_{0}}^{2}-{{x}_{0}}^{2}=0$.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=2{{y}_{0}}^{2},{x}_{1}{x}_{2}={{y}_{0}}^{2}-{{x}_{0}}^{2}$,
∴|AB|=$\sqrt{1+\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}}}\sqrt{4{{y}_{0}}^{4}-4{{y}_{0}}^{2}+4{{x}_{0}}^{2}}$=$\sqrt{2}(2-{{y}_{0}}^{2})$.
∴$\frac{|OP{|}^{2}}{|AB|}=\frac{{{x}_{0}}^{2}+{{y}_{0}}^{2}}{\sqrt{2}(2-{{y}_{0}}^{2})}$=$\frac{2-{{y}_{0}}^{2}}{\sqrt{2}(2-{{y}_{0}}^{2})}=\frac{\sqrt{2}}{2}$.
∴|OP|2和|AB|的比值是常数$\frac{\sqrt{2}}{2}$;
(ii)证明:如图,
∵OP∥AB,∴${S}_{△O{F}_{2}B}={S}_{△P{F}_{2}B}$,
则S=S1+S2 =S△PAB,
∵|AB|=$\sqrt{2}(2-{{y}_{0}}^{2})$,
P到直线AB的距离为d=$\frac{|{y}_{0}{x}_{0}-{x}_{0}{y}_{0}-{y}_{0}|}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}}}=\frac{|{y}_{0}|}{\sqrt{2-{{y}_{0}}^{2}}}$.
∴$S={S}_{△PAB}=\frac{1}{2}•\sqrt{2}(2-{{y}_{0}}^{2})•\frac{|{y}_{0}|}{\sqrt{2-{{y}_{0}}^{2}}}$=$\frac{\sqrt{2}}{2}\sqrt{(2-{{y}_{0}}^{2})•{{y}_{0}}^{2}}=\frac{\sqrt{2}}{2}\sqrt{-{{y}_{0}}^{4}+2{{y}_{0}}^{2}}$
=$\frac{\sqrt{2}}{2}\sqrt{-({{y}_{0}}^{2}-1)^{2}+1}<\frac{\sqrt{2}}{2}$.
点评 本题考查椭圆的几何性质,考查了直线和圆锥曲线的位置关系,体现了数学转化思想方法,题目运算量大,考查了学生的运算求解能力,是压轴题.
A. | 17 | B. | 29 | C. | 44 | D. | 52 |
A. | 12+2$\sqrt{3}$+3π | B. | 12+3π | C. | $\frac{\sqrt{3}π}{3}$+2$\sqrt{3}$ | D. | $\sqrt{3}$π+2$\sqrt{3}$ |
A. | [$\frac{7}{25},+∞)$ | B. | [$\frac{1}{3}$,+∞) | C. | [$\frac{4}{5}$,+∞) | D. | [1,+∞) |