题目内容

【题目】已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x , 则 =(
A.
B.
C.
D.1

【答案】B
【解析】解:∵f(x+2)=f(x)对x∈R恒成立,

∴f(x)的周期为2,(x)是定义在R上的偶函数,

=f(﹣ )=f(

∵当x∈[0,1]时,f(x)=2x

∴f( )=

故选:B.

【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网