题目内容
已知单调递增的等比数列{an}满足:
a2+a3+a4=28,且a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整数n.
a2+a3+a4=28,且a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整数n.
(1)2n(2)n=5.
(1)设{an}的公比为q,由已知,得∴
即,解得或 (舍去)∴an=a1qn-1=2n,
(2)bn=2nlog2n=-n·2n,
设Tn=1×2+2×22+3×23+…+n×2n,①
则2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1, ②
①-②得-Tn=(2+22+…+2n)-n×2n+1
=-(n-1)·2n+1-2,
∴Sn=-Tn=-(n-1)×2n+1-2,
由Sn+n·2n+1>50,得
-(n-1)·2n+1-2+n·2n+1>50,则2n>26,
故满足不等式的最小的正整数n=5.
即,解得或 (舍去)∴an=a1qn-1=2n,
(2)bn=2nlog2n=-n·2n,
设Tn=1×2+2×22+3×23+…+n×2n,①
则2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1, ②
①-②得-Tn=(2+22+…+2n)-n×2n+1
=-(n-1)·2n+1-2,
∴Sn=-Tn=-(n-1)×2n+1-2,
由Sn+n·2n+1>50,得
-(n-1)·2n+1-2+n·2n+1>50,则2n>26,
故满足不等式的最小的正整数n=5.
练习册系列答案
相关题目