题目内容
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
(1)an=2n-1(2)
ln 2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034854696664.png)
(1)依题意,得
解得a2=2.
设等比数列{an}的公比为q,由a2=2,可得a1=
,a3=2q.
又S3=7,可知
+2+2q=7,即2q2-5q+2=0,
解得q=2或
.
由题意,得q>1,∴q=2,∴a1=1.
故数列{an}的通项是an=2n-1.
(2)由于bn=ln a3n+1,n=1,2,…,
由(1)得a3n+1=23n,
∴bn=ln 23n=3n ln 2,
又bn+1-bn=3ln 2,
∴数列{bn}是等差数列.
∴Tn=b1+b2+…+bn=
=
ln 2.
故Tn=
ln 2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348547111447.png)
解得a2=2.
设等比数列{an}的公比为q,由a2=2,可得a1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034854727410.png)
又S3=7,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034854727410.png)
解得q=2或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034854758338.png)
由题意,得q>1,∴q=2,∴a1=1.
故数列{an}的通项是an=2n-1.
(2)由于bn=ln a3n+1,n=1,2,…,
由(1)得a3n+1=23n,
∴bn=ln 23n=3n ln 2,
又bn+1-bn=3ln 2,
∴数列{bn}是等差数列.
∴Tn=b1+b2+…+bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034854774737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348547891102.png)
故Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034854696664.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目