题目内容
【题目】如图,在直三棱柱中,,为棱的中点,.
(1)证明:平面;
(2)设二面角的正切值为,,,求异面直线与所成角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)取的中点,根据平行四边形性质得,再根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互余关系确定结果.
试题解析:(1)证明:取的中点,连接,,
∵侧面为平行四边形,∴为的中点,
∴,又,∴,
∴四边形为平行四边形,则.
∵平面,平面,∴平面.
(2)解:过作于,连接,
则即为二面角的平面角.
∵,,∴.
以为原点,建立空间直角坐标系,如图所示,则,,,,
则,,.
∵,∴,
∴异面直线与所成角的余弦值为.
练习册系列答案
相关题目