题目内容

11.函数f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若函y=f (x)十f(2-x)-b,b∈R恰4个零,则b的取值范围是(  )
A.($\frac{7}{4}$,+∞)B.(一∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

分析 由题意得g(x)=f (x)十f(2-x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,作函数g(x)的图象,从而结合图象可求得.

解答 解:∵f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,
∴f(2-x)=$\left\{\begin{array}{l}{2-|2-x|,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,
设g(x)=f (x)十f(2-x)
=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,
作函数g(x)的图象如下,

g(-$\frac{1}{2}$)=$\frac{1}{4}$-$\frac{1}{2}$+2=$\frac{7}{4}$,g($\frac{5}{2}$)=$(\frac{5}{2})^{2}$-5×$\frac{5}{2}$+8=$\frac{7}{4}$;
结合图象可知,
b的取值范围是($\frac{7}{4}$,2);
故选:D.

点评 本题考查了函数的化简与分段函数的应用,同时考查了数形结合的思想应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网