题目内容
6.已知函数f(x)是定义在R上的偶函数,当x>0时,$f(x)={x^2}+\frac{2}{x}$,则x<0时,f(x)=x2-$\frac{2}{x}$.分析 当x<0时可得-x>0,整体代入已知解析式结合函数的奇偶性可得.
解答 解:当x<0时可得-x>0,
∵当x>0时,$f(x)={x^2}+\frac{2}{x}$,
∴f(-x)=(-x)2+$\frac{2}{-x}$=x2-$\frac{2}{x}$,
又函数为定义在R上的偶函数,
∴当x<0时f(x)=x2-$\frac{2}{x}$,
故答案为:x2-$\frac{2}{x}$.
点评 本题考查函数解析式的求解,涉及函数的奇偶性和整体的思想,属基础题.
练习册系列答案
相关题目
11.函数f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若函y=f (x)十f(2-x)-b,b∈R恰4个零,则b的取值范围是( )
A. | ($\frac{7}{4}$,+∞) | B. | (一∞,$\frac{7}{4}$) | C. | (0,$\frac{7}{4}$) | D. | ($\frac{7}{4}$,2) |
18.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$且f(x+2)=f(x).若方程f(x)-kx-2=0有三个不相等的实数根,则实数k的取值范围是( )
A. | $(\frac{1}{3},1)$ | B. | $(-\frac{1}{3},-\frac{1}{4})$ | C. | $(\frac{1}{3},1)∪(-1,-\frac{1}{3})$ | D. | $(-\frac{1}{3},-\frac{1}{4})∪(\frac{1}{4},\frac{1}{3})$ |
16.已知函数$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$,那么在下列区间中含有函数f(x)零点的是( )
A. | $(0,\frac{1}{3})$ | B. | $(\frac{1}{3},\frac{1}{2})$ | C. | $(\frac{1}{2},\frac{2}{3})$ | D. | $(\frac{2}{3},1)$ |