题目内容
【题目】(选修4﹣4:坐标系与参数方程)
已知直线l过点P(﹣1,2),且倾斜角为 ,圆方程为 .
(1)求直线l的参数方程;
(2)设直线l与圆交与M、N两点,求|PM||PN|的值.
【答案】
(1)解:直线l过点P(﹣1,2),且倾斜角为 ,故直线l的参数方程为 ,即 为参数)
(2)解:圆方程 =2( ﹣ ),即ρ2=2( ﹣ )=ρ cosθ﹣ ,
化为直角坐标方程为 + =1.
把 代入 + =1化简可得 t2+(3+2 )t+ =0.
设此一元二次方程式的两个根分别为 t1和 t2,则由根与系数的关系可得 t1t2= .
由题意可得|PM||PN|=|t1||t2|=|t1t2|=
【解析】(1)由题意可得,直线l的参数方程为 ,化简可得结果.(2)把圆的极坐标方程化为直角坐标方程可得 t2+(3+2 )t+ =0,由根与系数的关系可得 t1t2= ,再由|PM||PN|=|t1||t2|=|t1t2|求得结果.
【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点,倾斜角为的直线的参数方程可表示为(为参数).
【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如表:
(1)完成表格,并判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为X,求X的公布列及数学期望E(X).
男性公务员 | 女性公务员 | 总计 | |
有意愿生二胎 | 30 | 15 | |
无意愿生二胎 | 20 | 25 | |
总计 |
附:
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)的影响,对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年宣传费(万元) | 23 | 25 | 27 | 29 | 32 | 35 |
年销售量(吨) | 11 | 21 | 24 | 66 | 115 | 325 |
(1)根据散点图判断与,哪一个更适合作为年销售量(吨)与关于宣传费(万元)的回归方程类型;
(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值大于1时,认为该年效益良好,现从这6年中任选3年,记其中选到效益良好的数量为,试求的所有取值情况及对应的概率;
(3)根据频率分布直方图中求出样本数据平均数的思想方法,求的平均数.