题目内容
【题目】已知函数,在区间内任取两个实数,,且,若不等式恒成立,则实数的取值范围是
A. B. C. D.
【答案】B
【解析】
分析:首先,由的几何意义,得到直线的斜率,然后,得到函数图象上在区间(1,2)内任意两点连线的斜率大于1,从而得到f′(x)=>1 在(1,2)内恒成立.分离参数后,转化成 a>2x2+3x+1在(1,2)内恒成立.从而求解得到a的取值范围.
详解:∵的几何意义为:
表示点(p+1,f(p+1)) 与点(q+1,f(q+1))连线的斜率,
∵实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2)内.
不等式>1恒成立,
∴函数图象上在区间(1,2)内任意两点连线的斜率大于1,
故函数的导数大于1在(1,2)内恒成立.
由函数的定义域知,x>﹣1,
∴f′(x)=>1 在(1,2)内恒成立.
即 a>2x2+3x+1在(1,2)内恒成立.
由于二次函数y=2x2+3x+1在[1,2]上是单调增函数,
故 x=2时,y=2x2+3x+1在[1,2]上取最大值为15,
∴a≥15
∴a∈[15,+∞).
故选:A.
练习册系列答案
相关题目