题目内容

【题目】如图所示,AC为⊙O的直径,D为 的中点,E为BC的中点.

(1)求证:DE∥AB;
(2)求证:ACBC=2ADCD.

【答案】
(1)证明:连接BD,

因为D为 的中点,所以BD=DC.

因为E为BC的中点,所以DE⊥BC.

因为AC为圆的直径,所以∠ABC=90°,

所以AB∥DE.…(5分)


(2)证明:因为D为 的中点,所以∠BAD=∠DAC,

又∠BAD=∠DCB,则∠DAC=∠DCB.

又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.

所以 = ,ADCD=ACCE,2ADCD=AC2CE,

因此2ADCD=ACBC.


【解析】(1)欲证DE∥AB,连接BD,因为D为 的中点及E为BC的中点,可得DE⊥BC,因为AC为圆的直径,所以∠ABC=90°,最后根据垂直于同一条直线的两直线平行即可证得结论;(2)欲证ACBC=2ADCD,转化为ADCD=ACCE,再转化成比例式 = .最后只须证明△DAC∽△ECD即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网