题目内容
【题目】已知的三边长为a,b,c,有下列四个命题:
①以,,为边长的三角形一定存在;
②以,,为边长的三角形一定存在;
③以,,为边长的三角形一定存在;
④以,,为边长的三角形一定存在.
其中正确的是( )
A.①③B.②③C.②④D.①④
【答案】D
【解析】
①:利用三角形的三边的性质,结合不等式的性质进行判断即可;
②:通过举特例进行判断即可;
③:通过举特例进行判断即可;
④:根据三角形三边的性质,结合绝对值的性质进行判断即可.
①:设三角形三边的关系为:,因此有,.
先比较与的大小关系,也就是比较与的大小关系,也就是
比较与的大小关系,显然有,因此;
再比较与的大小关系,也就是比较与的大小关系,也就是比
较与的大小关系,即比较与的大小关系,显然
,即,因此以,,为边长的三角形一定存
在;
②:当时,显然有成立,因此这三边能构成三角
形,而,显然不成立,故以,,
为边长的三角形不一定存在;
③:当时,显然有成立,因此这三边能构成三角
形,而,显然不成立,故以,
,为边长的三角形不一定存在;
④:设三角形三边的关系为:,因此有,
,,
因此有,
,
,所以以,,
为边长的三角形一定存在.
故选:D
【题目】某种植物感染病毒极易导致死亡,某生物研究所为此推出了一种抗病毒的制剂,现对20株感染了病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg)进行统计.规定:植株吸收在6mg(包括6mg)以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.
编号 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量(mg) | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
(1)完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?
吸收足量 | 吸收不足量 | 合计 | |
植株存活 | 1 | ||
植株死亡 | |||
合计 | 20 |
(2)①若在该样本“吸收不足量”的植株中随机抽取3株,记为“植株死亡”的数量,求得分布列和期望;
②将频率视为概率,现在对已知某块种植了1000株并感染了病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量,求.
参考数据:,其中