题目内容
【题目】已知数列{an}的前n项和为Sn , 且a1=2,nan+1=2(n+1)an
(1)记bn= ,求数列{bn}的通项bn;
(2)求通项an及前n项和Sn .
【答案】
(1)解:因为nan+1=2(n+1)an
所以 ,即bn+1=2bn
所以{bn}是以b1=2为首项,公比q=2的等比数列.
所以数列{bn}的通项bn=2×2n﹣1=2n
(2)解:由(1)得an=nbn=n2n.
所以 sn=12+222+323+…+(n﹣1)2n﹣1+n2n.;
2 sn=122+223+324+…+(n﹣1)2n+n2n+1.;
所以﹣sn=2+22+23+24+…+2n﹣n2n+1= .
所以sn=(n﹣1)2n+1+2
【解析】(1)由nan+1=2(n+1)an ,即bn+1=2bn . (2)由(1)得an=nbn=n2n . 错位相减法求和即可.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
【题目】2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18﹣36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量 | 频数 | 频率 |
0至5个 | 0 | 0 |
6至10个 | 30 | 0.3 |
11至15个 | 30 | 0.3 |
16至20个 | a | c |
20个以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.