题目内容

19.曲线y=x3-x2-x+1在点(0,1)处的切线方程是x+y-1=0.

分析 求出函数的导数,求得切线的斜率,由直线的斜截式即可得到切线方程.

解答 解:y=x3-x2-x+1的导数为y′=3x2-2x-1,
曲线y=x3-x2-x+1在点(0,1)处的切线斜率为k=0-0-1=-1,
即有曲线y=x3-x2-x+1在点(0,1)处的切线方程为y=-x+1,
即为x+y-1=0.
故答案为:x+y-1=0.

点评 本题考查导数的运用:求切线方程,主要考查导数的几何意义,直线方程的求法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网