题目内容
【题目】已知函数.
(1)若,解不等式;
(2)若存在实数,使得不等式成立,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)由绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)先化简不等式为|3x﹣a|﹣|3x+6|≥1﹣a,再根据绝对值三角不等式得|3x﹣a|﹣|3x+6|最大值为|a+6|,最后解不等式得实数的取值范围
试题解析:解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,
或或,
解得:﹣≤x≤;
(2)不等式f(x)≥1﹣a+2|2+x|成立,
即|3x﹣a|﹣|3x+6|≥1﹣a,
由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,
即有f(x)的最大值为|a+6|,
∴或,
解得:a≥﹣.
练习册系列答案
相关题目
【题目】某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(万件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量y与年份x之间的回归直线方程 = x+ ;
(2)预测该地2018年的商品需求量(结果保留整数).