题目内容
设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( )
A.(0,2) | B.[0,2] |
C.(2,+∞) | D.[2,+∞) |
C
∵x2=8y,
∴焦点F的坐标为(0,2),准线方程为y=-2.
由抛物线的定义知|MF|=y0+2.以F为圆心、|FM|为半径的圆的标准方程为x2+(y-2)2=(y0+2)2.
由于以F为圆心、|FM|为半径的圆与准线相交,又圆心F到准线的距离为4,故4<y0+2,∴y0>2.故选C.
∴焦点F的坐标为(0,2),准线方程为y=-2.
由抛物线的定义知|MF|=y0+2.以F为圆心、|FM|为半径的圆的标准方程为x2+(y-2)2=(y0+2)2.
由于以F为圆心、|FM|为半径的圆与准线相交,又圆心F到准线的距离为4,故4<y0+2,∴y0>2.故选C.
练习册系列答案
相关题目