题目内容

【题目】已知函数y=f(x)的图象与g(x)=logax(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过点(9,2).
(1)求函数f(x)的解析式;
(2)若f(3x1)>f(x+5)成立,求x的取值范围.

【答案】
(1)解:∵loga9=2,解得a=3,∴g(x)=log3x.
∵函数y=f(x)的图象与g(x)=log3x的图象关于x轴对称,

(2)解:∵f(3x1)>f(x+5),

,解得
所以x的取值范围为
【解析】(1)由f(x)与g(x)图象关于x轴对称,得到两函数的解析式之间的关系,利用g(x)过已知点,求a的值得到函数解析式;
(2)将函数不等式转化为同底型对数不等式,结合函数函数的单调性得到不等式组求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网