题目内容

【题目】已知i是虚数单位,a,b∈R,z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,z1=z2
(1)求a,b的值;
(2)若z=m﹣2+(1﹣m)i,m∈R,求证:|z+a+bi|≥

【答案】
(1)解:由z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,由z1=z2

,解得

∴a=2,b=1


(2)证明:∵z=m﹣2+(1﹣m)i,m∈R,

∴|z+a+bi|=|m﹣2+(1﹣m)i+2+i|=

= =

当且仅当m=1时上式取等号,

∴|z+a+bi|≥


【解析】(1)由复数相等的条件列出方程组,求解即可得答案;(2)把z和a,b的值代入|z+a+bi|,再结合复数求模以及配方法即可证得结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网