题目内容
【题目】在三棱锥A﹣BCD中AB=AC=1,DB=DC=2,AD=BC= ,则三棱锥A﹣BCD的外接球的表面积为( )
A.π
B.
C.4π
D.7π
【答案】D
【解析】解:∵AB=AC=1,AD=BC= ,BD=CD=2,
∴AB⊥AD,AC⊥AD,
∴AD⊥平面ABC,
在△ABC中,由余弦定理得cos∠BAC= =﹣ ,
∴∠ABC=120°,
以AC为x轴,以AD为z轴建立如图所示的坐标系:
则A(0,0,0),B(﹣ , ,0),C(1,0,0),D(0,0, ),
设棱锥A﹣BCD的外接球球心为M(x,y,z),
则x2+y2+z2=(x+ )2+(y﹣ )2+z2=(x﹣1)2+y2+z2=x2+y2+(z﹣ )2,
解得x= ,y= ,z= ,
∴外接球的半径为r= = .
∴外接球的表面积S=4πr2=7π.
故选D.
【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的2×2列联表:
及格 | 不及格 | 合计 | |
很少使用手机 | 20 | 6 | 26 |
经常使用手机 | 10 | 14 | 24 |
合计 | 30 | 20 | 50 |
(1)判断是否有97.5%的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,则此二人适合结为学习上互帮互助的“学习师徒”,记X为两人中解出此题的人数,若X的数学期望E(X)=1.4,问两人是否适合结为“学习师徒”? 参考公式及数据: ,其中n=a+b+c+d.
P(K2≥K0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了 50 人,他们年龄的频数分布及对使用微信交流赞成人数如表.
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(I)由以上统计数据填写下面 2×2 列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;
年龄不低于45岁的人 | 年龄低于45岁的人 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若对年龄在[55,65),[65,75)的被调查人中随机抽取两人进行追踪调查,记选中的4人中赞成使用微信交流的人数为X,求随机变量X的分布列和数学期望
参考公式:K2= ,其中n=a+b+c+d
参考数据:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |