题目内容

如图,F1、F2分别是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)已知△AF1B的面积为40
3
,求a,b的值.
(Ⅰ)∠F1AF2=60°?a=2c?e=
c
a
=
1
2

(Ⅱ)设|BF2|=m,则|BF1|=2a-m,
在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2-2|BF2||F1F2|cos120°
?(2a-m)2=m2+a2+am.?m=
3
5
a

△AF1B面积S=
1
2
|BA||F1A|sin60°
?
1
2
×a×(a+
3
5
a)×
3
2
=40
3

?a=10,
∴c=5,b=5
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网