题目内容

3.设a∈R,n∈N*,求和:l+a+a2+a3+…+an=$\left\{\begin{array}{l}n+1,\;\;a=1\\ \frac{{1-{a^{n+1}}}}{1-a},\;\;a≠1.\end{array}\right.$.

分析 分a=0、a=1、a≠0且a≠1分别求解得答案.

解答 解:当a=0时,l+a+a2+a3+…+an=0;
当a=1时,l+a+a2+a3+…+an=1+1+…+1=n+1;
当a≠0且a≠1时,l+a+a2+a3+…+an=$\frac{1-{a}^{n+1}}{1-a}$.
验证当a=0时,上式成立.
∴l+a+a2+a3+…+an=$\left\{\begin{array}{l}n+1,\;\;a=1\\ \frac{{1-{a^{n+1}}}}{1-a},\;\;a≠1.\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}n+1,\;\;a=1\\ \frac{{1-{a^{n+1}}}}{1-a},\;\;a≠1.\end{array}\right.$.

点评 本题考查等比数列的前n项和,体现了分类讨论的数学思想方法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网