题目内容
【题目】若函数 有两个极值点,,其中 ,,且,则方程 的实根个数为________________.
【答案】5
【解析】
由函数f(x)=﹣lnx+ax2+bx﹣a﹣2b有两个极值点x1,x2,可得2ax2+bx﹣1=0有两个不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解的个数.
∵函数f(x)=﹣lnx+ax2+bx﹣a﹣2b有两个极值点x1,x2,
∴f′(x)=﹣+2ax+b=,
即为2ax2+bx﹣1=0有两个不相等的正根,
∴△=b2+8a>0.解得x=.
∵x1<x2,﹣,b>0,
∴x1=,x2=.
而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2
即有0<x1<x2,:∵x1,x2>0又x1x2=﹣>1
∴x2>1,∵f(1)=﹣b<0∴f(x1)<0,
f(x2)>0.
①根据f′(x)画出f(x)的简图,
∵f(x2)=x2,由图象可知方程f(x)=x2有两解,方程f(x)=x1有三解.
综上①②可知:方程f(x)=x1或f(x)=x2共有5个实数解.
即关于x的方程2a(f(x))2+bf(x)﹣1=0的共有5不同实根.
故答案为:5
【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.