题目内容
【题目】平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(ⅰ)求证:点M在定直线上;
(ⅱ)直线与y轴交于点G,记△的面积为,△的面积为,求的最大值及取得最大值时点P的坐标.
【答案】(Ⅰ);(Ⅱ)(Ⅰ)见解析;(Ⅱ)的最大值为,此时点的坐标为
【解析】
试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(Ⅰ)由点P的坐标和斜率设出直线l的方程和抛物线联立,进而判断点M在定直线上;(Ⅱ)分别列出,面积的表达式,根据二次函数求最值和此时点P的坐标.
试题解析:
(Ⅰ)由题意知,可得:.
因为抛物线的焦点为,所以,
所以椭圆C的方程为.
(Ⅱ)(Ⅰ)设,由可得,
所以直线的斜率为,
因此直线的方程为,即.
设,联立方程
得,
由,得且,
因此,
将其代入得,
因为,所以直线方程为.
联立方程,得点的纵坐标为,
即点在定直线上.
(Ⅱ)由(Ⅰ)知直线方程为,
令得,所以,
又,
所以,
,
所以,
令,则,
当,即时,取得最大值,此时,满足,
所以点的坐标为,因此的最大值为,此时点的坐标为.
练习册系列答案
相关题目