题目内容
【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f()=1,当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范围.
【答案】(1)0(2)奇函数 (3)
【解析】
1)函数y=f(x)的定义域为R,赋值令x=y=0,则可求f(0)的值;
(2)令y=﹣x,结合f(0)的值,可得结论;
(3)利用单调性的定义,结合足f(x+y)=f(x)+f(y),可得函数的单调性,进而将抽象不等式转化为具体不等式,即可求解.
(1)∵函数y=f(x)的定义域为R,
令x=y=0,则f(0)=f(0)+f(0),∴f(0)=0;
(2)令y=﹣x,得 f(0)=f(x)+f(﹣x)=0,
∴f(﹣x)=﹣f(x),故函数f(x)是R上的奇函数;
(3)f(x)是R上的增函数,证明如下:
任取x1,x2∈R,x1<x2,则x2﹣x1>0
∴f(x2)﹣f(x1)=f(x2﹣x1+x1)﹣f(x1)=f(x2﹣x1)+f(x1)﹣f(x1)=f(x2﹣x1)>0
∴f(x1)<f(x2)
故f(x)是R上的增函数.
由f()=1,
∴f()=f()=f()+f()=2
那么f(x)+f(2+x)<2,可得f(2+2x)<f()
∵f(x)是R上的增函数.
∴2+2x,
解得:x,
故得x的取值范围是(﹣∞,).
练习册系列答案
相关题目