题目内容
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
【答案】(1)f(x)=x(x≥0),g(x)=(x≥0);(2)投资A类为16万元,投资B类为4万,最大3万元.
【解析】
试题分析:(1)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;
(2)由(1)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.
试题解析:(1)设两类产品的收益与投资额的函数分别为f(x)=k1x,g(x)=k2.
由已知得f(1)==k1,g(1)==k2,所以f(x)=x(x≥0),g(x)=(x≥0).
(2)设投资类产品为x万元,则投资类产品为(20-x)万元.
依题意得y=f(x)+g(20-x)=+(0≤x≤20).
令t=(0≤t≤2),则y=+t=-(t-2)2+3,
所以当t=2,即x=16时,收益最大,ymax=3万元.
练习册系列答案
相关题目