题目内容
【题目】已知函数f(x)=(x+1)2ex , 设k∈[﹣3,﹣1],对任意x1 , x2∈[k,k+2],则|f(x1)﹣f(x2)|的最大值为( )
A.4e﹣3
B.4e
C.4e+e﹣3
D.4e+1
【答案】B
【解析】解:求导函数,可得f′(x)=(x+1)2ex=(x2+4x+3)ex ,
令f′(x)>0,可得x<﹣3或x>﹣1;令f′(x)<0,可得﹣3<x<﹣1
∴函数的单调增区间为(﹣∞,﹣3),(﹣1,+∞),单调减区间为(﹣3,﹣1)
∵k∈[﹣3,﹣1],x1 , x2∈[k,k+2],f(﹣3)=4e﹣3 , f(﹣1)=0,f(1)=4e
∴f(x)max=f(1)=4e,f(x)min=f(﹣1)=0
∴|f(x1)﹣f(x2)|的最大值为4e,
故选B.
【考点精析】根据题目的已知条件,利用函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:
生二胎 | 不生二胎 | 合计 | |
70后 | 30 | 15 | 45 |
80后 | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;
(2)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.
参考数据:
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(参考公式: ,其中n=a+b+c+d)