题目内容
【题目】选修4-4,极坐标与参数方程
已知在平面直角坐标系中,为坐标原点,曲线(为参数),在以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同单位长度的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)直线与轴的交点,经过点的直线与曲线交于两点,若,求直线的倾斜角.
【答案】(1)曲线的普通方程为,直线的直角坐标方程为.
(2)或.
【解析】
(1)对曲线的参数方程两边平方后相加,可求得直角坐标方程.对直线的极坐标方程,展开后直接利用极转直的公式进行转化.(2)设出直线的参数方程,联立直线与曲线的方程得,利用参数的几何意义列出的方程,由此求得直线的斜率,进而求得倾斜角的值.
(1)曲线的普通方程为,
直线的直角坐标方程为.
(2)点的坐标为.设直线的参数方程为(为参数,为倾斜角),联立直线与曲线的方程得:.
设的参数分别为,则
.
且满足,故直线的倾斜解是或.
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:
分组(岁) | 频数 |
合计 |
(1)求频率分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.
【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表:
组别 | 一 | 二 | 三 | 四 | 五 |
满意度评分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
频数 | 5 | 10 | a | 32 | 16 |
频率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估计用户的满意度评分的平均数;
(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?