题目内容
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
【答案】(1)0.05(2)0.45(3)1200
【解析】试题分析:(Ⅰ)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(Ⅱ)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(Ⅲ)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果
试题解析:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.
从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个
1.事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=1/20=0.05
2.事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=9/20=0.45
3.事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.
【题目】假设关于某设备的使用年限x和支出的维修费用y(万元),有如下表的统计资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知y对x呈线性相关关系,试求:
(1)线性回归方程 .
(2)估计使用年限为10年时,维修费用是多少.
(3)计算总偏差平方和、残差平方和及回归平方和.
(4)求 并说明模型的拟合效果.