题目内容
【题目】设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
【答案】D
【解析】解:设F(x)=f (x)g(x),当x<0时,
∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.
∴F(x)在当x<0时为增函数.
∵F(﹣x)=f (﹣x)g (﹣x)=﹣f (x)g (x)=﹣F(x).
故F(x)为(﹣∞,0)∪(0,+∞)上的奇函数.
∴F(x)在(0,+∞)上亦为增函数.
已知g(﹣3)=0,必有F(﹣3)=F(3)=0.
构造如图的F(x)的图象,可知
F(x)<0的解集为x∈(﹣∞,﹣3)∪(0,3).
故选D
先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(﹣3)=0可求得答案.
练习册系列答案
相关题目