题目内容
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,则C=( )
A.
B.
C.
D.
【答案】B
【解析】解:sinB=sin(A+C)=sinAcosC+cosAsinC,
∵sinB+sinA(sinC﹣cosC)=0,
∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,
∴cosAsinC+sinAsinC=0,
∵sinC≠0,
∴cosA=﹣sinA,
∴tanA=﹣1,
∵0<A<π,
∴A= ,
由正弦定理可得 = ,
∴sinC= ,
∵a=2,c= ,
∴sinC= = = ,
∵a>c,
∴C= ,
所以答案是:B.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.
练习册系列答案
相关题目