题目内容

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,

(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由
(1)证明过程详见解析;(2).

试题分析:本题主要考查线面的位置关系、二面角等基础知识,意在考查考生的空间想象能力推理论证能力.第一问,利用为正方形,得到,由于平面与平面ABCD互相垂直,利用面面垂直的性质,得平面,利用线面垂直的性质得,利用线面垂直的判断,得
平面,再利用线面垂直的性质得;第二问,法一:作出辅助线,则利用射影定理得,则即为二面角的平面角,则,在中求出DN,在中求出,从而得到,最后在中求出BM,即得到AM的长;法二:利用向量法,根据已知条件先求出平面MCD和平面的法向量,利用夹角公式,通过解方程得AM的长.
试题解析:(1)连结于F,
∵四边形为正方形,

∵正方形与矩形ABCD所在平面互相垂直,交线为
平面,又平面

,∴平面
平面,∴.                 6分
(2)存在满足条件的.
【解法一】假设存在满足条件的点,过点于点,连结,则

所以为二面角的平面角,
9分
所以
中,所以
又在中,,所以,∴
中,

故在线段上存在一点,使得二面角,且.               12分
【解法二】依题意,以为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标系,

因为,则,所以.
易知为平面的法向量,设,所以,
设平面的法向量为,所以,即
所以,取
,又二面角的大小为
所以
,解得.
又因为,所以.
故在线段上是存在点,使二面角的大小为,且.     12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网