ÌâÄ¿ÄÚÈÝ

12£®Èôa¡¢bÊÇÕý³£Êý£¬a¡Ùb£¬x¡¢y¡Ê£¨0£¬+¡Þ£©£¬Ôò$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{y}$¡Ý$\frac{{£¨a+b£©}^{2}}{x+y}$£¬µ±ÇÒ½öµ±$\frac{a}{x}$=$\frac{b}{y}$ʱÉÏʽȡµÈºÅ£®ÀûÓÃÒÔÉϽáÂÛ£¬¿ÉÒԵõ½º¯Êýf£¨x£©=$\frac{4}{x}$+$\frac{9}{1-2x}$£¨x¡Ê£¨0£¬$\frac{1}{2}$£©£©µÄ×îСֵΪ17+12$\sqrt{2}$£®

·ÖÎö ½«f£¨x£©±äÐÎΪ$\frac{{2}^{2}}{x}$+$\frac{{3}^{2}}{1-2x}$=$\frac{£¨2\sqrt{2}£©^{2}}{2x}$+$\frac{{3}^{2}}{1-2x}$£¬ÔËÓýáÂÛ£¬¼´¿ÉµÃµ½×îСֵ£¬×¢ÒâµÈºÅ³ÉÁ¢µÄÌõ¼þ£®

½â´ð ½â£ºÓÉÌâÒâÖª£¬f£¨x£©=$\frac{4}{x}$+$\frac{9}{1-2x}$=$\frac{{2}^{2}}{x}$+$\frac{{3}^{2}}{1-2x}$£¬£¨0£¼x£¼$\frac{1}{2}$£©£¬
¡ß2¡Ù3ÇÒ¾ùΪÕý³£Êý£¬
¡à1-2x¡Ê£¨0£¬1£©£¬
¡à$\frac{{2}^{2}}{x}$+$\frac{{3}^{2}}{1-2x}$=$\frac{£¨2\sqrt{2}£©^{2}}{2x}$+$\frac{{3}^{2}}{1-2x}$¡Ý$\frac{£¨2\sqrt{2}+3£©^{2}}{2x+1-2x}$=17+12$\sqrt{2}$£¬
µ±ÇÒ½öµ±$\frac{2\sqrt{2}}{2x}$=$\frac{3}{1-2x}$ʱ£¬¼´x=3$\sqrt{2}$-4ʱµÈºÅ³ÉÁ¢£¬
¼´f£¨x£©¡Ý17+12$\sqrt{2}$£®
´ð°¸£º17+12$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄ×îСֵµÄÇ󷨣¬×¢ÒâÔËÓýáÂÛ£¬Ê¹µÃx+yΪ¶¨Öµ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø