ÌâÄ¿ÄÚÈÝ
12£®Èôa¡¢bÊÇÕý³£Êý£¬a¡Ùb£¬x¡¢y¡Ê£¨0£¬+¡Þ£©£¬Ôò$\frac{{a}^{2}}{x}$+$\frac{{b}^{2}}{y}$¡Ý$\frac{{£¨a+b£©}^{2}}{x+y}$£¬µ±ÇÒ½öµ±$\frac{a}{x}$=$\frac{b}{y}$ʱÉÏʽȡµÈºÅ£®ÀûÓÃÒÔÉϽáÂÛ£¬¿ÉÒԵõ½º¯Êýf£¨x£©=$\frac{4}{x}$+$\frac{9}{1-2x}$£¨x¡Ê£¨0£¬$\frac{1}{2}$£©£©µÄ×îСֵΪ17+12$\sqrt{2}$£®·ÖÎö ½«f£¨x£©±äÐÎΪ$\frac{{2}^{2}}{x}$+$\frac{{3}^{2}}{1-2x}$=$\frac{£¨2\sqrt{2}£©^{2}}{2x}$+$\frac{{3}^{2}}{1-2x}$£¬ÔËÓýáÂÛ£¬¼´¿ÉµÃµ½×îСֵ£¬×¢ÒâµÈºÅ³ÉÁ¢µÄÌõ¼þ£®
½â´ð ½â£ºÓÉÌâÒâÖª£¬f£¨x£©=$\frac{4}{x}$+$\frac{9}{1-2x}$=$\frac{{2}^{2}}{x}$+$\frac{{3}^{2}}{1-2x}$£¬£¨0£¼x£¼$\frac{1}{2}$£©£¬
¡ß2¡Ù3ÇÒ¾ùΪÕý³£Êý£¬
¡à1-2x¡Ê£¨0£¬1£©£¬
¡à$\frac{{2}^{2}}{x}$+$\frac{{3}^{2}}{1-2x}$=$\frac{£¨2\sqrt{2}£©^{2}}{2x}$+$\frac{{3}^{2}}{1-2x}$¡Ý$\frac{£¨2\sqrt{2}+3£©^{2}}{2x+1-2x}$=17+12$\sqrt{2}$£¬
µ±ÇÒ½öµ±$\frac{2\sqrt{2}}{2x}$=$\frac{3}{1-2x}$ʱ£¬¼´x=3$\sqrt{2}$-4ʱµÈºÅ³ÉÁ¢£¬
¼´f£¨x£©¡Ý17+12$\sqrt{2}$£®
´ð°¸£º17+12$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄ×îСֵµÄÇ󷨣¬×¢ÒâÔËÓýáÂÛ£¬Ê¹µÃx+yΪ¶¨Öµ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÈôµÈ±ÈÊýÁÐÇ°nÏîºÍΪSn£¬ÇÒÂú×ãS3=S2+S1£¬Ôò¹«±ÈqµÈÓÚ£¨¡¡¡¡£©
A£® | 1 | B£® | -1 | C£® | ¡À1 | D£® | ²»´æÔÚ |
7£®Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãΪF£¬¹ý½¹µãFÇÒбÂÊΪ$\sqrt{3}$µÄÖ±ÏßÓëË«ÇúÏßÓÒÖ§ÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¬ÔòË«ÇúÏßµÄÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | [$\sqrt{3}$£¬+¡Þ£© | B£® | £¨1£¬$\sqrt{3}$] | C£® | [2£¬+¡Þ£© | D£® | £¨1£¬2] |
4£®ÊýÁеÄͨÏʽÊÇan=4n-1£¬Ôòa6µÈÓÚ£¨¡¡¡¡£©
A£® | 21 | B£® | 22 | C£® | 23 | D£® | 24 |
1£®¶ÔÓÚÈÎÒâʵÊýx£¬´úÊýʽ$\frac{1}{2}{x^2}$-3x+5µÄÖµÊÇÒ»¸ö£¨¡¡¡¡£©
A£® | ·Ç¸ºÊý | B£® | ÕýÊý | C£® | ¸ºÊý | D£® | ÕûÊý |