题目内容
【题目】已知f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围是
【答案】 ≤a<
【解析】解:∵当x≥1时,y=logax单调递减,
∴0<a<1;
而当x<1时,f(x)=(3a﹣1)x+4a单调递减,
∴a< ;
又函数在其定义域内单调递减,
故当x=1时,(3a﹣1)x+4a≥logax,得a≥ ,
综上可知, ≤a< .
所以答案是: ≤a<
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对对数函数的单调性与特殊点的理解,了解过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.
练习册系列答案
相关题目
【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下 列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合计 | 75 | 25 | 100 |
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?