题目内容

【题目】若函数(0, 2π)内有两个不同零点

(1)求实数的取值范围

(2)的值

【答案】(1)a的取值范围是(-2, -)∪(-, 2).

(2).

【解析】

(1)由于故可将问题转化为方程sin(x+(0, 2π)内有相异二解,由条件得到,结合函数的图象可得所求范围.(2)根据为函数的零点可得sinα+cosα+=0sinβ+cosβ+=0,将两式相减并结合和差化积公式可得tan从而可得所求

(1)由题意得sinx+cosx=2(sinx+cosx)=2 sin(x+),

∵函数(0, 2π)内有两个不同零点,

∴关于x的方程sinx+cosx+a=0(0, 2π)内有相异二解,

∴方程sin(0, 2π)内有相异二解.

0<2π,

结合图象可得若方程有两个相异解,则满足

解得

∴实数的取值范围是

(2) ∵ 是方程的相异解

∴ sinα+cosα+=0 ①

sinβ+cosβ+=0 ②

②得(sinαsinβ)+( cosαcosβ)=0,

∴ 2sincos2sinsin

sin≠0,

∴ tan

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网