题目内容
【题目】已知分别是椭圆C: 的左、右焦点,其中右焦点为抛物线的焦点,点在椭圆C上.
(1)求椭圆C的标准方程;
(2)设与坐标轴不垂直的直线过与椭圆C交于A、B两点,过点且平行直线的直线交椭圆C于另一点N,若四边形MNBA为平行四边形,试问直线是否存在?若存在,请求出的斜率;若不存在,请说明理由.
【答案】(1)(2)直线不存在.
【解析】试题分析:(1)根据点在椭圆上以及题目中的条件得到,进而得到椭圆方程;(2)因为四边形MNBA为平行四边形,所以|AB|=|MN|,联立直线和椭圆得到二次方程,根据弦长公式可得到方程,进而解得参数值.
解析:
(1)由的焦点为(1,0)可知椭圆C的焦点为
又点在椭圆上,得,
椭圆C的标准方程为
(2)由题意可设直线的方程为, 由得,所以.
所以|AB|==.
又可设直线MN的方程为, 由得,因为,所以可得。|MN|==.
因为四边形MNBA为平行四边形,所以|AB|=|MN|.
即, ,
但是,直线的方程过点,即
直线AB与直线MN重合,不合题意,所以直线不存在.
【题目】在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
编号成绩 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(1)求数学y成绩关于物理成绩x的线性回归方程(精确到0.1),若某位学生的物理成绩为80分时,预测他的数学成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以x表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.