题目内容

在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),求Tn=b1+b2+…+bn(n∈N*).
(1)∵{an}成等差数列,a1=8,a3=4.
∴8+2d=4,解得公差d=-2
∴an=8+(n-1)×(-2)=10-2n.
(2)设a1+a2+…+an=S'n
由an=10-2n≥0 得n≤5,
∴当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=
n(8+10-2n)
2
=-n2+9n=S'n
当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-a6-…-an
=2S'5-S'n=n2-9n+40.
故Sn=
-n2+9n
n2-9n+40
1≤n≤5
n>5
(n∈N)
(3)bn=
1
n(12-an)
=
1
n•(2n+2)
=
1
2
1
n
-
1
n+1

∴Tn=b1+b2+…+bn=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
n
2(n+1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网