题目内容

【题目】据历年大学生就业统计资料显示:某大学理工学院学生的就业去向涉及公务员、教师、金融、公司和自主创业等五大行业2020届该学院有数学与应用数学、计算机科学与技术和金融工程等三个本科专业,毕业生人数分别是70人,140人和210人现采用.分层抽样的方法,从该学院毕业生中抽取18人调查学生的就业意向.

1)应从该学院三个专业的毕业生中分别抽取多少人?

2)国家鼓励大学生自主创业,在抽取的18人中,就业意向恰有三个行业的学生有5人为方便统计,将恰有三个行业就业意向的这5名学生分别记为,统计如下表:

公务员

×

×

教师

×

×

金融

×

公式

×

×

自主创业

×

×

其中“○”表示有该行业就业意向,“×”表示无该行业就业意向.

现从5人中随机抽取2人接受采访.为事件“抽取的2人中至少有一人有自主创业意向”,求事件发生的概率.

【答案】1)分别抽取3人,6人,9人(2

【解析】

(1)由已知,数学与应用数学、计算机科学与技术和金融工程三个专业的毕业学生之比为1:2:3,采用分层抽样的方法分别计算即可.
(2)用列举法得到从5人中随机抽取2人接受采访的情况有10种,然后列举出事件所包含的结果,由古典概率的计算公式可得答案.

1)由己知,数学与应用数学、计算机科学与技术和金融工程三个专业的毕业生人数之比为123.由于采取分层抽样的方法抽取18人因此应从数学与应用数学、计算机科学与技术和金融工程三个专业分别抽取3人,6人,9人.

2)从这5个人中随机抽取2人的所有结果有:

,共10

由统计表可知,事件包含的结果有:

,共7

所以事件发生的概率为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网