题目内容
【题目】已知an=logn+1(n+2)(n∈N+),观察下列运算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定义使a1a2a3…ak为整数的k(k∈N+)叫做希望数,则在区间[1,2016]内所有希望数的和为( )
A.1004
B.2026
C.4072
D.22016﹣2
【答案】B
【解析】解:an=logn+1(n+2)= ,
∴a1a2a3…an= … = =k,∴n+2=2k .
n∈[1,2016],∴n=22﹣2,23﹣1,…,210﹣2,
∴在区间[1,2016]内所有希望数的和为=22﹣2+23﹣2+…+210﹣2= ﹣2×9=2026,
故选:B.
【考点精析】掌握对数的运算性质是解答本题的根本,需要知道①加法:②减法:③数乘:④⑤.
练习册系列答案
相关题目