题目内容
(本小题满分14分)
已知椭圆中心在原点,焦点在x轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702749347.png)
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
已知椭圆中心在原点,焦点在x轴上,离心率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702733515.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702749347.png)
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702765280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702780416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702796292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702765280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702827466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702936510.png)
(Ⅰ)
(Ⅱ)
的大小为定值,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703061659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702999654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702936510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703061659.png)
试题分析:(I)设椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037030921097.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703108910.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037031391073.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703155777.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703170925.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037031861049.png)
故椭圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703201663.png)
(Ⅱ)当直线l的斜率不存在时,由坐标原点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702796292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702765280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702827466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037032642089.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703279587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703061659.png)
当直线l的斜率存在时,设直线l的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703311598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703326858.png)
∵原点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702796292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702765280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703357461.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703373879.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703389764.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037034042234.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037034201641.png)
将(*)式代入得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037034351379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037034511264.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037034672846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240037034821840.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703061659.png)
综上分析,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003702936510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003703061659.png)
点评:解决直线与圆锥曲线的位置关系题目时,如果需要设直线方程,则不要漏掉直线斜率不存在的情况;联立直线方程与圆锥曲线方程后,不要忘记验证判别式大于零.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目