题目内容
【题目】设,函数.
(1)若,极大值;
(2)若无零点,求实数的取值范围;
(3)若有两个相异零点,,求证:.
【答案】(1);(2);(3)证明见解析.
【解析】分析:(1),根据导数的符号可知的极大值为;
(2) ,就分类讨论即可;
(3)根据可以得到,因此原不等式的证明可化为,可用导数证明该不等式.
详解:(1)当时,,
当时,,当时,,
故的极大值为.
(2),
①若时,则,是区间上的增函数,
∵,,
∴,函数在区间有唯一零点;
②若,有唯一零点;
③若,令,得,
在区间上,,函数是增函数;
在区间上,,函数是减函数;
故在区间上,的极大值为,
由于无零点,须使,解得,
故所求实数的取值范围是.
(3)由已知得,
所以,
故等价于即.
不妨设,令,,
则,在上为单调增函数,
所以即,也就是,故原不等式成立.
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣传费(万元) | 38 | 48 | 58 | 68 | 78 | 88 |
年销售量(吨) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式即。对上述数据作了初步处理,得到相关的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根据所给数据,求关于的回归方程;
(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数, )
附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为