题目内容
【题目】已知 , ,函数f(x)= .
(Ⅰ)求函数y=f(x)图象的对称轴方程;
(Ⅱ)若方程f(x)= 在(0,π)上的解为x1 , x2 , 求cos(x1﹣x2)的值.
【答案】解:(Ⅰ)
= ,
令 ,得 ,
即y=f(x)的对称轴方程为 ,(k∈Z).
(Ⅱ)由条件知 ,且 ,
易知(x1 , f(x1))与(x2 , f(x2))关于 对称,则 ,
∴
【解析】(Ⅰ)由已知利用平面向量数量积的运算,三角函数恒等变换的应用化简可得函数解析式为f(x)=sin(2x﹣ ),利用正弦函数的对称性即可得解.(Ⅱ)由条件知 ,且 ,可求 ,利用诱导公式即可化简求值得解.
【考点精析】关于本题考查的两角和与差的余弦公式,需要了解两角和与差的余弦公式:才能得出正确答案.
练习册系列答案
相关题目
【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
【题目】某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.