题目内容
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的 中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,试
确定点M的位置,使二面角M﹣BQ﹣C大小为60°,并求出 的值.
【答案】证明:(Ⅰ)∵PA=PD,Q为AD的中点,∴PQ⊥AD, 又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,
又∵PQ∩BQ=Q,∴AD⊥平面PQB,
又∵AD平面PAD,∴平面PQB⊥平面PAD.
(Ⅱ)∵平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PQ⊥AD,
∴PQ⊥平面ABCD.
以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,
建立空间直角坐标系如图.
则由题意知:Q(0,0,0),P(0,0, ),B(0, ,0),C(﹣2, ,0),
设 (0<λ<1),则 ,
平面CBQ的一个法向量是 =(0,0,1),
设平面MQB的一个法向量为 =(x,y,z),
则 ,
取 = ,
∵二面角M﹣BQ﹣C大小为60°,
∴ = ,
解得 ,此时 .
【解析】(Ⅰ)由已知条件推导出PQ⊥AD,BQ⊥AD,从而得到AD⊥平面PQB,由此能够证明平面PQB⊥平面PAD.(Ⅱ)以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,利用向量法能求出结果.
【考点精析】本题主要考查了平面与平面垂直的判定的相关知识点,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.
练习册系列答案
相关题目