题目内容

【题目】为了提高产品的年产量,某企业拟在2013年进行技术改革,经调查测算,产品当年的产量x万件与投入技术改革费用m万元(m≥0)满足x=3﹣ (k为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产均能销售出去,厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金)
(1)试确定k的值,并将2013年该产品的利润y万元表示为技术改革费用m万元的函数(利润=销售金额﹣生产成本﹣技术改革费用);
(2)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?并求出最大利润.

【答案】
(1)解:由题意可知,当m=0时,x=1(万件)∴1=3﹣k,∴k=2,∴x=3﹣

∴每件产品的销售价格为1.5× (元),

∴2013年的利润y=x(1.5× )﹣(8+16x)﹣m=28﹣m﹣ (m≥0)


(2)解:∵m≥0,∴y=28﹣m﹣28﹣m﹣ =29﹣[(m+1)+ ]≤ =21

当且仅当m+1= ,即m=3时,ymax=21.

∴该企业2013年的技术改革费用投入3万元时,厂家的利润最大,最大为21万元


【解析】(1)首先根据题意令m=0代入x=3﹣ 求出常量k,这样就得出了x与m的关系式,然后根据2013年固定收入加再投入资金求出总成本为8+16x,再除以2013的件数就可以得出2013年每件的成本,而每件的销售价格是成本的1.5倍,从而得出了每件产品的销售价格,然后用每件的销售单价×销售数量得到总销售额.最后利用利润=销售金额﹣生产成本﹣技术改革费用得出利润y的关系式.(2)根据基本不等式,求出y的最大值时m的取值即可.
【考点精析】利用基本不等式对题目进行判断即可得到答案,需要熟知基本不等式:,(当且仅当时取到等号);变形公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网