ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãΪF£¨1£¬0£©£¬ÇÒ¹ýµã£¨-1£¬$\frac{3}{2}$£©£¬ÓÒ¶¥µãΪA£¬¾¹ýµãFµÄ¶¯Ö±ÏßlÓëÍÖÔ²½»ÓÚB£¬CÁ½µã£®£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©¼Ç¡÷AOBºÍ¡÷AOCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬Çó|S1-S2|µÄ×î´óÖµ£»
£¨3£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»µãT£¬Ê¹µÃµãB¹ØÓÚxÖáµÄ¶Ô³ÆµãÂäÔÚÖ±ÏßTCÉÏ£¿Èô´æÔÚ£¬ÔòÇó³öTµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÀûÓý¹µãΪF£¨1£¬0£©£¬ÇÒ¹ýµã£¨-1£¬$\frac{3}{2}$£©£¬Áгö·½³Ì£¬È»ºóÇó½âÍÖÔ²·½³Ì£®
£¨2£©ÉèÖ±Ïßl·½³ÌΪ£ºx=my+1£®ÓëÍÖÔ²ÁªÁ¢£¬ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬£¨y1£¾0£¬y2£¼0£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Í¨¹ýµ±m=0ʱ£¬ÏÔÈ»|S1-S2|=0£»µ±m¡Ù0ʱ£¬$|{{S_1}-{S_2}}|=|{\frac{1}{2}•2•{y_1}-\frac{1}{2}•2•£¨-{y_2}£©}|$£¬Çó½â|S1-S2|µÄ×î´óÖµ£®
£¨3£©¼ÙÉèÔÚxÖáÉÏ´æÔÚÒ»µãT£¨t£¬0£©Âú×ãÒÑÖªÌõ¼þ£¬ÀûÓÃkTB=-kTC£¬Çó³öt©q˵Ã÷´æÔÚµãT£¨4£¬0£©Âú×ãÌõ¼þ£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ$\left\{\begin{array}{l}\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1\\{a}^{2}-{b}^{2}=1\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}a=2\\ b=\sqrt{3}\end{array}\right.$£¬
¡àÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+\frac{y^2}{3}=1$¡£¨3·Ö£©
£¨2£©ÉèÖ±Ïßl·½³ÌΪ£ºx=my+1£®
ÁªÁ¢CµÃ£¨3m2+4£©y2+6my-9=0
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬£¨y1£¾0£¬y2£¼0£©£¬Ôò${y_1}+{y_2}=-\frac{6m}{{3{m^2}+4}}£¬{y_1}{y_2}=-\frac{9}{{3{m^2}+4}}$
µ±m=0ʱ£¬ÏÔÈ»|S1-S2|=0£»
µ±m¡Ù0ʱ£¬$|{{S_1}-{S_2}}|=|{\frac{1}{2}•2•{y_1}-\frac{1}{2}•2•£¨-{y_2}£©}|$=$|{{y_1}+{y_2}}|=\frac{6|m|}{{3{m^2}+4}}$=$\frac{6}{{3|m|+\frac{4}{|m|}}}¡Ü\frac{6}{{2\sqrt{3|m|•\frac{4}{|m|}}}}=\frac{{\sqrt{3}}}{2}$
µ±ÇÒ½öµ±$3|m|=\frac{4}{|m|}$£¬¼´$m=¡À\frac{{2\sqrt{3}}}{3}$ʱȡµÈºÅ
×ۺϵÃ$m=¡À\frac{{2\sqrt{3}}}{3}$ʱ£¬|S1-S2|µÄ×î´óֵΪ$\frac{{\sqrt{3}}}{2}$£®¡£¨8·Ö£©
£¨3£©¼ÙÉèÔÚxÖáÉÏ´æÔÚÒ»µãT£¨t£¬0£©Âú×ãÒÑÖªÌõ¼þ£¬ÔòkTB=-kTC
¼´$\frac{y_1}{{{x_1}-t}}=-\frac{y_2}{{{x_2}-t}}⇒{y_1}£¨{x_2}-t£©+{y_2}£¨{x_1}-t£©=0$
⇒y1£¨my2+1-t£©+y2£¨my1+1-t£©=0⇒2my1y2+£¨1-t£©£¨y1+y2£©=0$⇒2m•\frac{-9}{{3{m^2}+4}}+£¨1-t£©•\frac{-6m}{{3{m^2}+4}}=0$
ÕûÀíµÃ£º£¨4-t£©•m=0£¬
¡ßmÈÎÒ⣬¡àt=4©q¹Ê´æÔÚµãT£¨4£¬0£©Âú×ãÌõ¼þ©q¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÓ¦Óã¬ÍÖÔ²·½³ÌµÄÇ󷨣¬´æÔÚÐÔÎÊÌâµÄ´¦Àí·½·¨£¬Î¤´ï¶¨ÀíÒÔ¼°»ù±¾²»µÈʽµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
A£® | £¨1£¬+¡Þ£© | B£® | £¨$\frac{2\sqrt{3}}{3}$£¬+¡Þ£© | C£® | £¨$\frac{\sqrt{5}+1}{2}$£¬+¡Þ£© | D£® | £¨$\sqrt{2}$+1£¬+¡Þ£© |
A£® | $\sqrt{2}$-1 | B£® | $\sqrt{2}$+1 | C£® | $\sqrt{3}$-1 | D£® | $\sqrt{3}$+1 |
A£® | Ïò×óƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î» | B£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î» | ||
C£® | Ïò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | D£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» |
ÄêÁ䣨ÖÜË꣩ | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Éí¸ß | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
A£® | 142.8cm | B£® | 145.9cm | C£® | 149.8cm | D£® | 151.7cm |