题目内容

15.已知点F是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,点E是该双曲线的左顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若∠AEB是钝角,则该双曲线的离心率e的取值范围是(  )
A.$(1+\sqrt{2},+∞)$B.$(1,1+\sqrt{2})$C.(2,+∞)D.$(2,1+\sqrt{2})$

分析 利用双曲线的对称性及∠AEB是钝角,得到AF>EF,求出AF,CF得到关于a,b,c的不等式,求出离心率的范围.

解答 解:∵双曲线关于x轴对称,且直线AB垂直x轴
∴∠AEF=∠BEF
∵∠AEB是钝角,
∴AF>EF
∵F为右焦点,过F且垂直于x轴的直线与双曲线交于A、B两点,
∴AF=$\frac{{b}^{2}}{a}$,
∵EF=a+c
∴$\frac{{b}^{2}}{a}$>a+c,即c2-ac-2a2>0
解得$\frac{c}{a}$>2或$\frac{c}{a}$<-1
双曲线的离心率的范围是(2,+∞)
故选:C.

点评 本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率问题就是研究三参数a,b,c的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网