题目内容
设函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222153831016.png)
(1)试判断当
的大小关系;
(2)求证:
;
(3)设
、
是函数
的图象上的两点,且
,证明:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215508648.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222153831016.png)
(1)试判断当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215398741.png)
(2)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222154301585.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215445619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215461809.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215476550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222154921691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215508648.png)
(1)
(2)见解析 (3)证明见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215523600.png)
(1)设F(x)=g(x)-f(x),(x>0),
然后求导,利用导数求出F(x)的最小值,说明最小值大于0即可.
(2)证明:由(1)知
,
令
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222156641064.png)
然后再利用不等式的性质同向不等式具有可加性进行证明即可
(1)设
则
由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215726747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222157421305.png)
时,
取得最小值为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215804693.png)
即
…………5分
(2)证明:由(1)知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222155391035.png)
令
则
……7分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222159134266.png)
…………10分
(3)证明:
,于是
,
,
以下证明
等价于
.令
…………12分则
,在
上, ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216132586.png)
所以
当
即
从而
,得到证明.对于
同理可证.
所以
…………16分
另法:(3)证明:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216272168.png)
,于是
,
,
以下证明
.只要证:
,即证:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216397766.png)
设:
,
…………12分
,
上为减函数,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216506756.png)
,即
.同理可证:
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215508648.png)
然后求导,利用导数求出F(x)的最小值,说明最小值大于0即可.
(2)证明:由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222155391035.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215570859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222156641064.png)
然后再利用不等式的性质同向不等式具有可加性进行证明即可
(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215679866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215695891.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215726747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222157421305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215773403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215788473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215804693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215835595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215523600.png)
(2)证明:由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222155391035.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215570859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222156641064.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222159134266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222159291582.png)
(3)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215960655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215976730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216022734.png)
以下证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216038690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216054760.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216085915.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216100755.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216116492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216132586.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232222161471011.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216178925.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216054760.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216210437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216241726.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215508648.png)
另法:(3)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216272168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215960655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215976730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216022734.png)
以下证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216038690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216366797.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216397766.png)
设:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216412522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216444661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216459917.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216475731.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216490658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216506756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216537712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216553433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222216584451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222215508648.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目