题目内容

【题目】在△ABC中,角A,B,C的对边是a,b,c,已知2b﹣c=2acosC.
(1)求A;
(2)若4(b+c)=3bc,a=2 ,求△ABC的面积S.

【答案】
(1)解:∵2b﹣c=2acosC,∴2b﹣c=2a×

化为:b2+c2﹣a2=bc,

∴bc=2bccosA,可得cosA= ,A∈(0,π),

解得A=


(2)解:∵a=2 ,b2+c2﹣a2=bc,

∴b2+c2﹣12=bc,

与联立4(b+c)=3bc,解得:bc=

∴△ABC的面积S= bcsinA= =


【解析】(1)由2b﹣c=2acosC,利用余弦定理可得:2b﹣c=2a× ,化为:b2+c2﹣a2=bc,再利用余弦定理即可得出.(2)由a=2 ,b2+c2﹣a2=bc,可得b2+c2﹣12=bc,与联立4(b+c)=3bc,解得:bc,利用三角形面积计算公式即可得出.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网